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SECTION 1
- SUMMARY
: 1.1 INTRODUCTION :
. Except for such missions as the Apolio moon landing and Skylab programs, most space

missions have been carried out using automated spacecraft controlled from the ground.
The advent of the shuttle again introduces the possibility of mission roles for man in

space. The shutﬂé carries free flier and sortie payloads. (See Figure 1-1) Frée
fliers are those payloads which are transported into space and deployed from the shuttle
to become typical automated spaceeraft. Sortie payloads are transported into space but : 1
remain attached to the shuttle during their total mission life. These sortie missions

" of up to 30 days are exemplified by the NASA Spacelab missions, with a manned Habitat
or with equ}pment mounted on cradles in the-Qrbiter cargo bay This latter mode is
of primary interest since it allows for experimental proofing flights of DOD equipment
being developed for use on automated spacecraft. Other studies such as Reference 1

——

have shown this mode of testing to be an economical approach as compared to testing ,
on automated spacecraft either as primary or 'piggy-back' payloads. The sortie \

payload mode can also be used for operational missions.

This study analyses the use of man in support of shuttle sortie missions with :
payloads mounted on the Standard Test Rack (defined in Reference 1) in the Orbiter
cargo bay. (See Figure 1-2) A group of candidate STP payloads, representing

a cross-section of all STP payloads, was selected to be used to provide baseline
payloads operational requirements. These payload requirements were analyzed and the
operational activities identified. The performance of these activities was assigned

to man or to automated equipment using a criteria developed to evaluate each funtion. A
{ typical manned activity time line was developed for a specific payload combination
and specific manned activities were defined. In parallel with these manned activity




FIGURE 1-1 SHUTTLE WITH SORTIE PAYLOADS
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FIGURE 1-2 PAYLOAD ON STR IN THE ORBITER BAY




analyses, the equipment required by man to operate and control the DOD payloads

was analyzed. hequirements were determined, existing equipment surveyed (including
DOD and NASA control equipment), and the Orbiter and the AFT Flight Deck (AFD)
interfaces and restraints were evaluated. From these analyses and eva;ub.tions.

a controls approach and the needed equipment were defined. :

The study task flow is shown in Figure 1-3.

1.2 STUDY OBJECTIVES
The objectives of this study are:
1. To determine the role of man in operating DOD
payloads on shuttle sortie missions.
2. Define the existing and/or new equipment required
by man to control and operate payloads.
Twelve STP-payloads were used to derive automated manned tasks to carry out the
study objectives.

1.3 STUDY APPROACH

In a totally automated system, all functions are performed by equipment. The
‘actions are preprogrammed to be initiated by a sensor input or a sequence timer
device. All data acquisition, analyses, decision making and subsequent actions
are performed by equipment. .

A manned system or man-in-the loop mode of operation results when man is sub-

stituted for some of the equipment. Man may be in space or on the ground.

Man is a "'superb' 'black box' and can give the following advantages:
1. Great flexibility in performing a large variety of tasks
2. Innate adaptive intelligehce to utilize his flexibility.
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3. The analyses he can do is limited only by the tools provided.
The real trade-offs between man and equipment are:

1. Limitations of man and machine. Some tasks can be done only by
H man; some only by equipment.

2. Cost. Even though costs of automating have been lowered by orders
of magnitude in the last 2 decades, the cost of the man-in-the-loop
mode for some current missions has been shown to be lower than
for the fully automated by analysés mode. This is due to the cost of |
software and its integration using present day ha.rdware and techniques.

This study considers the use of man to operate and control various types of payloads
from.the Payload Specialist Station (PSS) on the AFT Flight Deck. Extra Vehicular
Activity (EVA) is not included as a normal scheduled activity (where man uses his

muscle power to accomplish payload functions, i.e., unlatching and erecting a - N
column-mounted sensor from a stowed position to an operating position). Such EVA

activities are considered as contingency emergency actions, In this study man

uses his mental capability to evaluate data and make decisions and to take actions

which initiate payload equipment activity. The additional ha}‘dware needed by man

to acquire and evaluate data, and to initiate payload equipment activity is called

Flight Support Equipment (FSE). It is this FSE which is the subject of the payload

control equipment task in this report.
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SECTION 2

CONCLUSIONS AND RECOMMENDATIONS

2.1 Conclusions

The purpose of the STP payload missions is to provide scientific data and that which verifies
the performance of equipment or concept. Sky lab experience showed that in orbit, manned
control capability should be maximized for long time operations for missions

requiring day-to-day or orbit-to-orbit data evaluation and action planning. Such
control increased -the quantity and quality of the data obtained and improved the

chance of mission success.

The major conclusion of this study is that there is a significant role for man in
certain.,STP payload programs. Although not required on every mission, a significant
number of missions have operation characteristics that allow man-in-the-loop to
perform payloads control activities, generally at a lower cost than totally

automated payloads.

A second important conclusion is that crewmen should use a dedicated payloads

control system provided on the AFD to control and operate payloads in the Orbiter

bay. This allows for flexibility and ease of integration. Predicted lower costs

particularily make this a desired approach.

A summary of the conclusions reached in this study are contained in Table 2-1.

2.2 Recommendations
The following tasks are recommended to initiate activity in establishing the

depth of man's role and defining the equipment requirements leading to development




S o e

Table 2.1 Conclusions of Manned Interface Study

MAJOR CONCLUSIONS

@ MAN CAN PLAY A SIGNIFICANT ROLE IN CONTROLLING AND OPERATING
STP PAYLOADS

® A DEDICATED CONTROL SYSTEM IS THE BEST MODE FOR PAYLOAD
OPERATION AND CONTROL

OTHER CONCLUSIONS

e MANNED USAGE IS A FUNCTION OF
- COST
- UNIQUE PAYLOAD PERFORMANCE REQUIRE}ENTS
- ORBITER RESTRAINTS

e COST DRIVERS ARE &
- SOFTWARE I
- SOFTWARE INTEGRATION MANNED VS AUTOMATED |
- TRAINING . TRADEOFF :
- EQUIPMENT 5 - B3 56 o

‘e IUS AND TELEOPERATOR CONTROLS PRESENT BEST POTENTIAL FOR
PAYLOAD CONTROL COMMONALITY

‘e EXISTING DESIGN FQUIPMENT OPTIONS ARE AVAILABLE TO ASSEMBLE
INTO A DEDICATED 3YSTEM D CONTROL SYSTEM . JAD >

of STP Payloads Control and Operating Equipment (PCOE).

Task 1 Define payload operating requirements using a survey form prepared
” for that purpose

2 Perform mission analyses using the payload requirements to determine
the potentials for flights planned Shuttle missions, potential for
multiple payload flights, etc.

3  Investigate the IUS and Teleoperator systems in depth

4 Define and cost a system with specific hardware, Orbiter interface and
STR interface definitions

5 Perform an automated versus manned control study with cost tradeoffs.

These tasks should result in a definition of the depth and frequency of PCOE
usage and the direction to be taken with regard to hardware and commonality with

other systems.




SECTION 3

MANNED INTERFACE WITH STR PAYLOADS

3.1 INTRODUCTION

The Orbiter, by virtue of being a manned vehicle, provides a unique resqurce

to accomplishing STP payload mission objectives. A trained and skilled crewman, -
can effectively augment the STP payload systems resulting in an increase in

payload return without a proportional increase in cost.

A real time man-in-the-loop on orbit system offers operational benefits
such as:

o Target recognition

o Quick look data analysis

o Real time ground/flight interactions

o Equipment adjustment

o Equipment 1ﬁspection

o Contingency operations analysis and investigation

o Hardware configuration changes

o Equipment manipulation/assembly

o System deployment support

o Application software modificatione

o Operational mode selection

o Etc.

To determine the applicable areas of manned interactions with respect to

the potential benefits available for the STP missions, 16 payloads

ol




identified for STR interface and orbital support, were selected for the manned
interface issessment. A typical mission sequence was developed which identified

the mission by operational phase and further identified each phase by its basic
activities to determine the applicable areas of operational activities. An assessment
logic was develbped to accommodate the available information describing each payload,
and to determine those activities applicable for manned interaction or automated
operation. .

For the purposes of this study, contingency/malfunction activities were not addressed.
These activities are highly dependent on the speclfic design of each payload and are
the result of FMEA's, Failure Reports, System Functional Assessments and Test
Results which become available through the course of the payload fab/test cycles.

3.2 STR PAYLOADS

Sixteen payloads were identified for assessing the manned interfaces required during
their on-orbit phase of an STR shuttle flight. These payloads consisted of FARUV,
BMD, PDMM, SLED, ROMS, SEXTANT, LRT, HIRISE, ATLAS, PRAT, LASSII,
XUV, OGAO, OCMD and a deployable spacecraft (see Page 11). Of the 16 payloads,
there was insufficient data available to perform the manned interface assessment
for the PDMM a.nd ROMS payloads. Therefore, they were excluded from the study.
Additionally, since a deployable spacecraft is incorporated in the SLED and LASSI
payloads, -the independant deployable spacecraft was eliminated from the list of
paj'loads since ﬁxe operational requirements would be redundant. The remaining

12 payloads constitute the basis for the manned interface assessment. Table 3.2-1
itemizes those payloads and provides a brief description of each payload and its
operationdl objective.

10
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List of Payloads

FARUV
BMD

PDMM
SLED
ROMS
SEXTANT
LRT
HIRISE
ATLAS

PRAT

OGAO

OCMD

Far Ultra-Vlolet Camera

Ballistic Missile Division - Shuttle Target Measurement
Program

(unknown)

Space Laser Experiment Development

Remote Ocean Measuremen.t System

Space Sextant

Lasercom Receiver Test

Geothermal Earth Targets Infrared Imaging System .
Atmospheric Topside Laser Sounder

Precision Release Accuracy Test

Low Altitude Study of Ionbspheric Irregularities
Extreme Utra-Violet Environment

Optical Geophysics and Astronomical O.bservatory

Optical Countermeasures Demonstration
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TABLE 3-1 STR BASELINE PAYLOADS

Pa d

FAR UV

Brief Description

The experiment consists of two orbiter bay mounted Schmidt Cameras,
having different wavelength sensitivities and fine pointing capability.
Payload data will be recorded on film for ground based analysis.

Data will consist of imagery and -photometry of naturally-=-occurring

snd man made emission phenomena in near earth space.

The experiment equipment will primarily be an orbiter bay mounted
optical sensor designed for obtaining detailed measurements of optical

signatures of exoatmospheric targets of interest to the BMD System. Data

will be recorded on board and also downlinked to the ground.

SLED

The experiment configuraticn will be a combination of an orbiter released/
retrieved free flying spacccraft and an crbiter mounted laser optical system.
The spacecraft acts as a cooperative target fo.r orbiter based laser
experiments in addition to ground originated laser experiments. Data 1;
recorded on the free flying spacecraft with additional operatioiul data

downlinked to the ground.

This experiment is primarily an automated payload designed to demonstrate
the feasibility of autonomous satellite navigation and inertial attitude
determination using a two_-telucope orbiter mounted instrument. The
instzument is basically designed for non-mn;mcd spacecraft and irncorporates

a mini computer, fault tollerant computer and special electronics.
Data will be downlinked to the ground or temporarily stored on board

if required.

11
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TABLE 3-1 STR BASELINE PAYLOADS (cont'd)

Brief Description

The IRT is a communications experiment consisting of an orbiter nounto.d
laser directed to a receiving satellite at synchronous altitude. Data
transmitted up to the satellite will be retransmitted on’another laser
frequency to the orbiter and received by a laser optics module, Data

will be compared an4 the error recorded on an on-board tape recorder.

HIRISE

This experiment's primary instrument is a gimballed optical system
mounted in the orbiter bay and is designed to collect data. for character-
izing geothermal sites on a global basis. Data collected from selected

sites will be processed and stored in an on board atorage module.

ATLAS

The Atlas Experiment is an operational application and demonstration of
the performance of a topside laser sounder in measuring the atuospheric
density and aerosolin the upper troposphere and strstosphere. The
experiment congists of a ruby laser transmitter and yoke mounted telzscope
receiver. Data takes will be conducted during the orbital night phase

with all data recorded on board.

This experiment is designed as an urbita) test consisting of the release
of test objects, under controlled conditiors, to examine their deteiled
relative trajectories and determine the magnitude of their induced release

perturbations. Data will be telemetered from the released objects and
recorded on board the orbiter in addition to hand held high speed

'phot'o;uphic data. The released objects are to be recovered at the

conclusion of the test.

12
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TABLE 3-1 STR BASELINE PAYLOADS (cont'd)

Brief Description

LASS II is a combination of a free flier and orbiter based equipment
designed to measure certain fonospheric parameters relevent to the
phonomenon of VHF/UHF scintillations to batter unders!:and.the cause~

effect relationship between plasma instabilities, ionospheric irregularities
and scintillation phenomena. After free flier release, -the orbiter

will station keep, and through ground generated commands, the orbiter

will receive transmissions from the free flier, directed through the
ionospher. Data will be recotded on board the orbiter and then

downlinked. The free flier will be recovered at the conclusion of

axperiment,

The experiment consists of a group of four detection systems .duigned

to survey the XUV and X-Ray backgrounds of the earth's atmosphere and

the sky, It is made up of one zenith sky monitor, two all sky moni:orl'
and one nadir pointing auroral u;onltor. It is primarily & passive type of
experiment package with telemetry data downlinked to the ground and

recorded, as required, on board the orbiter.

The OGAO Experiment will obtain time histories, morﬁhology and dynamics

of auroral activities and equatorial regons of far UV emmissions. This

will be accomplished by usinga gimbal mounted nadir. viewing UV image conv&rter
camera, scanned by on board TV, pointed and controlled. by the on-board crew.
Video and sensor data will be downlinked when possible and recorded onboard

vhen required.

This experiment will demonstrate the performance of optical countermeasures
against ground based lasers and determine the laser beam degrauation caused bty
by atmospheric turbulence and absorbticn. It consists of a boom mounted
payload package and three orbiter mounted radiometers. It will operate in
basically a receiving mode in conjuction with two cooperating laser

ground sites. Data will be downlinked to ground and recorded onboard

if required.

13




3.3 Activities Reguired

There are two basic app'f.'oachea which can be taken to identify the iunned interface
activities required for a sortie payload. A bottoms up approach provides the

most detailed activity definition and identifies interfaces to the level of the number
of controls and displays required, identification of required operational toois and
support equipment, data display formats and any required on board application soft-
ware. This approach demands a total understanding of the payload'objectives, accurate
and complete systems descriptions,_ functional flows and detailed schematics and design
drawings. ; This level of definition is normally achieved between the preliminary and

critical design phases of a given space mission.

A second method, or top down approach, generates categorical activities based on the

. operational requirements ané objectives of the system under assessment. Although the

level of interface definition cannot be as detailed as the bottoms up approach, it doe
establish the generic interface requirements needed for operational activities. It

also requires considerably less detailed imowledge of the specific design features

of the payload being assessed.

The generation of the manned activities required for the STR Payloads used the top

down approach because detailed data such as schematics, functional flows, design drawing,

- etc., were not equally available for many of the identified STR Payloads. ‘This is

due to the various stages of development and procurement that these p ayloads are

currently experiencing.

The top down approach identified 9 phases of orbiter flight which require operational

interfaces for the STR payloads.

14
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These were:

Post Launch Activities
Health and C & W Verification
Brief (Prepass)

Pre Pass Activities
Experiment Operations

Post Operation Configuration
Brief (Post Pass)

Pre Landing Preparations
EVA

oy

A total of 44 activities were established which both satisfy the STR Payload require-
ments and also the 9 on-orbit operational phases. ’J

Table 3-2 lists each of the activities by operational phase and also provides a
brief description of each activity. The specific ""do' activities carried out by the
Payload Specialist are defined and listed for each operational phase in Table 3-2A.
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SPECIFIC ORBIT ACTIVITIES

TABLE 3-2
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3.4 Functional Assessment Criteria

The activities defined in Section 3,3 cover the entire range of STP payloads and
therefore do not apply, in total, to each individual payload. It was required to
review each payload ‘individually and in depth to drive out those functional activities

applicable to its on orbit operation.

During the course of this assessment, payload documentation made available for this
study was the basis for determining the applicability of each activity element. Due
to the top level nature of the majority of these documents, it was necessary to augment
the available data with expe.rience factors gained from similar or parallel payload in-

volvement, previous manned operations activities, and conceptual system configurations.

The result of this assessment is depicted in Table 3-3.. where each payload is identified

by its anticipated operational activities. Each activity, as it applies to each payload, is

further coded by an *, X or 0 to indicate whether the information was a fact, implication or
presumption. These were identified as follows:

* Fact -Data was directly available in the reference docv;unents
or the activity function was obviously required (i.e.,
power up of an electrically powered payload)

X Implication Although no direct reference was made in the reference
documentation, the activity. function is implied by the
system configuration (t.e., protective and launch re-=-
straint devices for gimbaled optical sensors) .

0 Presumption Payload configuration and complexity normally require
activities of this nature to achieve operational success

and/or readiness (i.e., functional health check or
equipment calibration). ]

As can be seen in Table 3-3 many of the activity elements apply to all the payloads
while some only apply to a specific few. To reduce redundant analytic efforts on each
payload, a comparison of payload activities was performed to determine the representive

payloads for further manned interface definition.
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TABLE 3-3  PAYLOAD ORBITAL ACTIVITY SURVEY
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The comparison of payloads was accomplished by arbitrarily choosing the FAR UV
Payload as a-baseline experiment and identifying activity differences for each
iqdividual payload to the FAR UV Payload. Tﬂe result of this comparison is shown

in Table 3.4. As can be seen, the payloads fell into 5 basic activity groups
incorporating the full spectrum of identified operational activities. Activities
(identified by the Ref. uctivity number) that were commﬁn to all payloads are not
shown in the table since the table only denotes differences from the baseline FAR

UV Payload. Each group was then reviewed t6 identify one representative payload
which encompgaseé all the necessary activities identified for that group of experi-
ments. It is 1mpor£ant to note here that Table 3-4 only 1dent1f1ed the differences

from the FAR UV Payload and that difference can be either the presence or absence of

. . aFAR UV payfloa.d activity. The result of this review was the selection of the

FAR UV, SLED, SEXTANT, PRAT AND OCMD Payloads. Operational activities of these
payloads do cover all of the previously identified activities and are identified by

%%% in the Table 3-4.
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3.5 Functional Assessment

Functional impleméntation of on orbit activ.ities can be achieved in threeé basic ways.
One apprbach would be to have a totally automated system where a sequence of

on orbit events occur in a predetermined manner initiated by a key event such as
seperation switch, limit detector or timeé tag. A second method would be to initiate
all events through ground commands determined through the use of ground based
computers and operator knowledge. The third approach would be to provide the on
board crew with all the necessary D & C interfaces to complete the events necessary
for successful payload operation. Obviously no one single approach lends itself

to the operation of payloads other than the least complex payload requiring a single
event activation/ceactivation during the course of its operational lif'e. The fact that
the payload is carried on a manned vehicle with interrupted communication links
implies a mix of all three approachs to optimizé the on orbit operations.

To determine the complexity factor associated with each one of the approaches each
payload activity, for the five selected payloads, was qualiﬁ.tively assessed in eight
specific areas affecting payload complexity and implementation. Complexity is defined
by the following list of component factors:

(=]

Requirements

Hardware

Software

Control Activities (data monitored, analysis, etc.)
Constraints and limitations (physical, .data, etc.)
Safety Level . ”

Performance

Reliability

Maintainability

0 0000O0OO0CO

A simple three level qualitative grading was used to indicate decreased complexity (+),
no anticipated change to configuration (o) and increased complexity (-).

The eight specific areas graded for each activity were:

Equipment Location - Relative to constraints on equipment access in
the orbiter cabin and cargo bay.

Instrumentation - Addition or reduction of required instrumentation
to achieve/verify an operational activity/event.
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Physical Configuration - The affect on payload hardware complexity imposed
by the selected approach.

Operational Flexibility - The ability to react to real time changes
‘ maximizing payload return,

Safety - Impacts incurred to maintain the safe operational
environment of a manned vehicle.

Computer Usage - Payload processor or orbiter GPC impacts

Software Requirements - Impacts incurred through the development of
payload applications software.

Security - Impacts incurred in the maintenance of a secure

control system.

Tables 3-5 through 3-9 show the results of this assessment for the five payloads.

To the right of the grading columns in each table is the relative standing of the

implementation methods. The standings are listed from left to right with "G"

indicating a ground activity, '"M" indicating an on orbit crew activity and "A"

indicating an automated activity The standings are separated by commas in most

cases and a slash (/) in an either/or (equal) standing.

In general, the assessment results indicate the majority of the 44 activities for all
five experiments are preferred to be performed by the on orbit crew. This preference
was driven primarily by four of the eight specific areas under assessment. These
were communication link requirements, operational ﬂe:dbmty; computer usage

and software requirements. Of the four, computer usage and software requirement
areas provide many of the functional capabilities which can supplement and/or replace
crew activities. The trade off between using the crew vs on board computers and
application software is the cost of developing and implementing the software system
and the cost of training and training hardware required to attain crew operatioral
readiness. To adequately perform this trade off requires det.ailed payload design,
configuration and mission objective definition currently not available for this

assessment.
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3.6 MANNED ACTIVITY DEFINITION

The results of the manned activities for the five baseline experiments
dévqloped in Section 3.5 are aummarize& in Table 3 -10, Each activity is
coded with a "G" indicating a ground activity,"M'" indicating an on orbit
crew activity and an "A" indicating an automated activity. The order of

preference is from top to bottom for each activity,

Of the 44 identified operational activities, 34 indicate a preference for
on-board crew performance which could, however, be altered by automated
techniques as discussed in Section 3.5. Included in these 34 activities
are all the activities identified for the post launch, health and C&W
verification, post operations configuration, pre-landing preparations

and EVA phases of on orbit operations,

In general, the summary of activities indicates that most.pre and post
experiment operations phase activities are candidates for on-orbit crew
functions. The experiment operations phase, however, provides a mix of
implementation preferences for 5 of the 18 activities identified which
are highly dependent on the payload mission opjectives; configuration and
payload element interactions, i.e., cooperative ground sites, targets,
detached free flyers, etc, Within these 5 implementation mix areas, no
trends are evident to provide general guidelines to establish manned
interface functions, As a result, it is recommended that the experiment
operations phase of any candidate payload be assessed independently to
determine its peculiar manned interface functions, and that this assessment
be performed with detailed knowledge of the payload objectives, con-

figuration and essential functional flow diagrams, | |
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3.7 MANNED ACTIVITY TIMELINE

In addition to defining manned interface activities, a mission timeline
was developed to determine the nature and sequence of operational activities

required for a nominal mission,

A hypothetical mix of the SLED and OCMD paylbads was used as a basis for
generating the timeline., The SLED payload was assumed to have minimum
operational restristions regarding orbital location, inclination and
altitude, The OCMD payload, however, required a ground track repeat
cycle to optimize ground station contacts at MIT and Holloman AFB and an
orbital inclination sufficient to provide contact opportunities with both

of these ground sites,

The orbital parameters selected to satisfy the OCMD requirements were a
circular orbit having an inclination of 57° and an altitude of 296,8 NM,
These parameters provided a 15 orbit ground track repeat cycle for each
day of operation, Figure 3-1 shows the daily ground track of this orbit
over the continental United States, Also illustrated in Figure 3-1 is
an assumed nominal contact range of 900 NM for the OCMD payload referenced

to the MIT and Holloman AFB ground stationa..

For a nominal 7-day mission, the number of contact opportunities with the
OCMD ground stations was calculated and are provided in Table 3-11, A
total of 48 contact opportunities exist for the operational OCMD mission
providing a total potential of 336 minutes of contact time. Since the
OCMD operational times are fixed to a definite set of orbital positions,
they become the drivers for the hypothetical STP mission. Therefore,

the SLED payload activities were scheduled to minimize conflicting"

operations with the OCMD payload,
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Typical ground track repeat cycle for second orbital day

Figure 3-1




Table 3-11  OCMD Contact Opportunities

GROUND ORBITS AVAILABLE TIME OF CONTACT

STATION SITE FOR_CONTACT PER ORBIT

MIT 15,30,45,60,75 ,90 7 MIN '
16,31,46,61,76 ,91 6 MIN
19,34,49,64,79 ,94 7 MIN
20,35,50,65,80 ,95 7 MIN

HOLIOMAN AFB 16,31,46,61,76 ,91 8 MIN
17,32,47,62,77 ,92 6 MIN
21,36,51,66,81 ,96 8 MIN
22,37,52,67,82 ,97 7 MIN

Figures 3.2  3-3, 3-4 show :imeline; for the day of launch
(day 0), the day following launch (day 1) and the da{( preceding recovery
(day 6), Crew activities are shown as well as the activities for the SIED,
ocMD payloa;is and operational opportunities for companion cargo payloads.
As can be seen from these timelines, the hypothetical STP mission can be
accomplished during on o'rbit single shift operation., This is a result
of the OCMD target opportunities falliqg into a time span compatible with
a nominal single shift crew work/a]:egp cycle,
The operational timeline was developed using the following additional ground
rules. These groundrules were developed by General Electrical from NASA documents
and are not necessarily the same as NASA and DOD groundrules.

1. ‘ Each work day contaipns an eight hour sleep period.

2. A minimum of six hours of sleep is required by all crewmen prior
to reentry.
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3. Three hours of each work day is required for the three
meal periods. .

4. One and one-fourth hours of each work day is allocated to crew
pre- and post-sleep activities.

5. One-half hour of each work day is allocated to crew debriefing/
briefing activities,

6. The first six and last eight orbits are dedicated to orbiter/
cargo activation/verification function activities,

7. Payload activities are terminated by 1800 hours of the day
prior to reentry,

3.8 Security

The security aspects of manned versus automated payload control modes were analyzed.
The results are shown in Table 3-12. For manned and automated payload controls, the
crew will require the appropriate clearances. For the automated mode, all equipment
will be on the STR in the cargo bay and only that area requires security controls )
such as equipment cover, shielding of electrical equipment from inadvertent exposure,
_etc. For the manned case, the control equipment on the AFD such as the compﬁters
w ith its software, data displays, etc. will also require security controls. In addition,
the need to know and approved access to AFD equipment is required by the Payload
Specialists who will operate that equipment and probably by other crew members
who have a need to be on the AFD

For both control mode cases, isolation of electrical equipment is required to prevent
inadvertent exposure of daﬁ\ or information. The manned case isolation requirement
is more extensive because of the greater amount of electrical equipment such as

the AFD control equipment and the hardware from the payload in the cargo bay to the
AFD control equipment.,_

Encryption/decryption is required-for both control modes. For the manned case, it
is possible that the Payload Specialist cou
between the control equipment and the payload during m?muons. However,

hardware would still be required in the communication.and teleﬁhtwi_lgks from the
Orbiter to the ground. - By o

trained to do encryption/decryption

r—————— e e
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The maintenance of security is more difficult with man in the loop because of the
possibility of human error. A totally automated system minimizes the number of
people involved and on the Orbiter is the most secure control mode.

The security aspects will have an impact on the selection of a dedicated control
system as compared to potential use of the IUS on Teleoperator control systems as

discussed in Sections 4.4 and 4.5. The security r equirements during ground operations

are almost the same for automated and manned control modes. The slight difference
is due to the additional equipment utilized in the manned control mode, i.e., AFD
hardware. Both modes require controlled areas with alarms, guards and limited
access; covers for equipment; clearances for all personnel and need to know lists

for people who will work with the equipment and data.

The conclusion drawn from the security analysis is that there is little difference
in the complexity and cost of providing a secure system for the automated and manned
control modes. The automated control system shows a slight advantage over the
manned control mode but it is not an overriding factor in control mode selection.
For all activities in controlling the payloads during flight operations shown in Tables
3-5 through 3-9, the following rating applies to the security aspects:

o Automated Control +

o Manned Control (by Orbiter crew) 0

o Ground Control (by ground crew) -
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SECTION 4

PAYLOAD CONTROL EQUIPMENT

4.1 INTRODUCTION

The payload control equipment (PCE) consists of the equipment required by the payload

or mission specialist to control and operate DOD payloads mounted on an Standard

Test Rack in the Orbiter Cargo Bay. This section identities the equipment

requirements, identifies equipment sources from current programs, evaluates

existing and new equipment, and finally recommends an approach and provides a list

of required equipment.

The sources of potentially usable payload‘control equipment are console and rack

mounted equipment designed, and in some cases built, for use on the following ﬁrograms.

o

o

o

Basic Orbiter controls on the AFT Flight Deck in conjunction
with the Orbiter General Purpose Computer

Spacelab AFT Flight Deck controls used in conjunction with
Iglooas part of a pallet only configuration

Interim Upper Stage (IUS) Communication Interface Unit used to operate
the IUS thru post-deployment activity

Spinning Solid Upper Stage (SSUS) Controls
Teleoperaﬁor Retrieval System (TRS) controls

Materials Processing in Space/Spacelab Controls

In addition to the above systems, a new system was defined using off the shelf

equipment. This system is aimed at operating a variety of DOD payloads on STR.

Each of the control systems will be evaluated against the general requirements

defined in Section 4.2. A control approach ie¢ recommended and an equipment

1ist defined.

——




4.2 PAYLOAD CONTROLS REQUIREMENTS
Payloads c.ontrols on the AFT Flight Deck (AFD) is an important issue which has
been addressed. The accommodations consfraints imposed by the orbiter which
influenced the results of this study are as follows:
(1) Available panel area, (2) available equipment volume, (3) weight
constraints, (4) thermal dissipation, (5) power, and (6) video interface.
The next paragraph defines those requirements which are imposed for those expc‘tinontl
which will be assembled into a mission.payload on the Standard Test Rack.
Requirements which are specifically discussed include display requirements,
control requirements, computer hardware requirements, computer software require-
ments and a brief evaluation on the operational impact of not using USAF standard

SGLS equipment for communications.

4.2.1 CONTROL AND DISPLAY REQUIREMENTS
Requirements for a Control and Display System have been derived from several sources

and can be classified accordingly. Functional requirements have been obtained

from analysis of typical operational scenarios for the various instruments to

be flown on STR. Physical requirements are the result of orbiter AFD accomodations
constraints and the functional requirements. In addition, the multi mission/

multi-use aspect of STR places certain requirements on the C & D system.

4.2.1.1 FUNCTIONAL REQUIREMENTS FOR CONTROL & DISPLAY
The C & D system must provide the functions to the payload specialist station to
enable experiment operations, experiment pointing control, a minimal amount of

experiment performance evaluation, and experiment computer software updating.




an

“n

Experiment operati:ona requirements identify those capabilities which the

payload’ specialist uses to communicate with the payload and vice versa.

Necessary switches, buttons, and keyboards, must be provided so that payload
subsystems can be activated and deactiviated and both discrete -and parametric
commands can be delivered to the payload to direct payload operations. Displays
must be provided so that the payload specialist can verify implementation of
commands which have been entered , monitor execution of the experiment timeline,
and to moniter engineering or science data to assure proper and safe operation of

the experiment.

The capability to monitor and control individual experiment pointing muét be provided.

Capability should be provided for payload specialist updating of exbe-f.i;en-f'compﬁt-efr
software because of the effective slow uplink command bit rate (+100 BPS) due to

holds for error checks, command repeats a.nci potential competition for command

uplink from Orbiter and other users. This updating capability can be limited to
modifying constants, table entries, etc. and need not include an aynamic reprogramming

capability.

While the STR itself requires some control and monitoring it has been determined
that the functional requirements identified for experiment control will be sufficient
for the STR.
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4,2,1.2 PHYSICAL REQUIREMENTS FoFR CONTROL & DISPLAY ( C & D )

The equipments selected for the control & display system must operate within

the physical constraints imposed by the AFD accomodations (see para 4.3), provide
the functions listed in the previous paragraph and be flexible enough to support
several experiments on a single flight, and be capable of being used on a flight

to flight basis without being modified. A final requirement is th;t tﬁe STR

C & D system must not require a disproportionate share of available AFD accomodations
such that other payloads would be excluded from flying with STR. The cost impact

of such an exclusion would be dramatic. The physical elements of principal coneern

are panel surface area, equipment volume, and power. The requirements for each of

these is summarized in Table 4-1,

TABLE 4=1 C & D PHYSICAL RESOURCE REQUIREMENTS

RESOURCE AMT. AVATLABLE ** i STR REQ'MT. *
Panel Surface 23.33 sq. ft. 4,21 sq. ft.
Volume . 21.65 cu. ft. -5.,43 cu. ft,
Power 750 watts : 50 watts - standby
: 600 watts-operatini
1

#*System design requirement based on limiting equipment to one panel in AFT
Flight Deck.

** 1US requirements: Panel volume 5.43 cu, ft, ‘
4 4 Panel surface area 4,21 sq. ft.
Power 150 w(CIU) up to 5 hours

The panel surface area for the C & D system must fit in 4.21 sq. ft. which is

25% of available surface areas.

The volume of C & D electronics must be less than 5.43 cu. ft. ™1
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Power consumption must be less than 600 watts when in operating modes and 50

"watts in stand-by modes. The stand-by mode consumption figure is somewhat

arbitrary while the operating modes figure is what would be available if

3 companion payloads were permitted 50 watts of stanthy power.

4,2.2 COMPUTER REQUIREMENTS
Recent technological innovations in computer hardware have substantially lowered

the unit costs of computer equipment and has caused emphasis to be shifted to

‘software development and integration as cost drivers for a data system since

both are highly labor intensive activities. This section discusses both hardware

and software requirements for the C & D computer system.

Computer hardware requirements are discussed below:

' o l The c;mputet itself should be a micro-processor with a 16 bit
word-length in order to provide sufficient computational accuracy for
engineering unit conversions, etc.

o The computer must consume little power.

o It must use a standard, commonly used instruction set (i.e., IBM,
PDP=-11) in order to facilitate software deyelopment, test, and
integration on other than flight hardware.

o The instruction set should contain both fixed point and floating point
arithmetic instructions.

o The computer architecture should be highly modular and reconfigurable
from mission to mission so that extra equipment is not flown and cause

needless consumption of power and space resources.

A recorder and storage device is required to store experiment data and

hold computer programs.

g ST




o The computer should be of sufficient reliability so as to preclude
necessity of redundancy in order to achieve ,99 reliability.
o Serial and patailel I/0 channels are required to accomodate both high

rate and low rate data.

The following software requirements have been identified:
o A common higher order language programming capability is required.
o Common processing functions should be reuseable from mission to
mission by developing an operating system which mot only manages
system resources but provides the following commonly used services
to experiments:

- limits checking and alarm reporting

- process keyboard inputs and service display requests and command
"entries.
- formatting down link data.

- special self interpretive flight instruction set.

4.3 AFT FLIGHT DECK DESCRIPTION

The AFT Flight Deck is the area in which man will funct}on to control .and operate
the DOD sortie payloads. An isometric of the AFT flight deck area is shown in
F;gure 4-1. It is designed to accommodate two functioning crewmen in a clear
floor space of 6%feet by 3%feet. One of the crewmen is the Mission Specialist
who is controls the Orbiter/payload interfaces. The other_is the Payload
Specialist who controls and operates payloads. When it is necessary to maneuver
the orbiter from the AFT Flight Deck, the pilot or commander will operate the

AFT Flight Deck Orbiter flight controls. The Mission Specialist and the Payload
Specialist functions are secondary and the specialists will stand out of the way.

The panel layout on the AFT Flight Deck is shown in Figure 4-2. The view is

looking AFT along the Orbiter X axis. The shaded panels are available for payloads.
" The unshaded panels are dedicated to the orbiter. Panel R~12 contains the Orbiter
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Figure 4-2 Aft Flight Deck Panel Arrangement
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control keyboard and CRT which can be utilized by payloads when not being used

by the Orbiter. Other payload utilizable areas are as follows:

o A standard switch panel usually mounted an L-12 panel surface
o Closed circuit TV .
o Windows
) Audio communication system (panel L-9 in the Payload specinlia.t station.

In addition, the Remote Ms'nipulator Sysien provides payload services (operated
by the Mission Specialist) and is controlled from Panel A7, A8 and Panel 140
(ha.mi controller adjacent to panel A8, not shown).

A sunﬁary of the surface area and volume avalable for payloads control equipment

is given below.

Table 4- 2 SURFACE AREA AND VOLUME FOR PAYLOADS CONTROLS
SURFACE VoL ’
AREA, FT
FT2
A6=-A2 1.84 1.07
A7-A2 1.84 1.07
L10 2.83 4.31
L1l 2,83 4,31
L12 | 2.83 4.31
L13 1.83 -
Ll“ 1083 o
L5 | . - !
R7 1.84 0.97
R11 2,83 4,31
R14 1.83 -
| ADDITIONAL - 1.3 (Under L10 and L11)
TOTAL 22.33 21.65
-6l-




Panels R11l, L10, Ll1l, L12, are standard 19 inch racks conforming to MIL-STD-189
and can accommodate 135 pounds of equipment. Panels R-7, A6A2 and A7A2 can carry

30 to 40 pounds of equipment.
The electric power available for payloads on the AFT Fight Deck is given in
the table below.

TABLE 4-4 POWER AVAILABLE FOR PAYLOADS = AFT FLIGHT DECK

POWER, WATTS *

PAYLOAD ORBITER GROUND
OPERATIONS . OPERATIONS

AVERAGE 750 350 750

PEAK . ' 1000%* 420%k% 1000*

* Not Part of Payload Bay Power
** 15 Minutes/3 hours
*%* 2 Minutes/Mission phase

AC electrical power is provided at various interfaces at 115 + 5 volts.

The electrical energy used on the AFT Flight Deck is chargeable to ‘the individual
user payloads, for deterﬁinaéion of costs impact over the -50 KWH allowable for
payloads. (See Reference 25. Cooling of AFT Flight Deck payload control equip-
ment is provided by drawing air from the cabin through thg equipment into the
Orbiter ducting system. Cooling is distributed between the Payload and Mission
Stations, as required, so long as the maximum total heat load is not exceeded.

The Orbiter provides cooling for the removal of a maximuym of 750 watts average,

and 1000 watts peak (15 minutes once every 3 hours), from mission and payload.
stations during on-orbit operations. Cooling in excess of 350 watts requires equal

reduction in the cooling provided by the payload heat exchanger. For prelaunch,
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~~. _ascent, descent, and post landing the combined maximum of 350 watts are ©rbiter-

pro\vl‘dvedl\'me above values shall include up to 100 watts cooling for AFD payload

s .
equipment consmﬂns\ggall quantities of power ( 10 watts each) by direct radiation

or convection to the cab‘i:z‘;\i’pcq;\fic forced-air cooling is not provided. Storage of
additional loose payload equipment is g‘él?ehuy~ not available on the AFT Flight Deck. (See -
Reference 6). Lockers A-16 and A-17 storage 'a:éa\(&gg}gum 4-2) contain mobile
T TV and communications equipment. It is possible that some of‘ail.gt\ this locker volume is not
‘ used Sn 1US flights, It would then be available for payload equipment, \;Pnere_a.re 89 cubic feet of |
storage volume on the mid-deck some of it in a limited number of standard sto;é.ibeogpiners. !
The rest is below the mid-deck platform. The standard container can hold 60 pounds of\.\ e

=5

' equipment. . -~
FIGURE 4-3 Y s STAMD MID-DECK STORAGE CONTAINER l |
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The JSC proposed ground rules for usage of the panel facilities are shown below;

Table 4-3 Proposed AFD Panel Space Guidelines for Mixed Cargo Elements

e Space will be allocated on the basis of equal shares for four cargo elements.
Larger elements (e.g., IUS) may be allocated two shares.

e Location L-12 will normally be utilized for. the GFE standard switch panels
(1 or 2, as required) and the GE manual pointing control/jettison panel.

e One standard switch panel is required as a minimum for all flights, to
provide power distribution for the timing buffer and other AFD users.

e One-half of one GFE standard switch panel (12 switches and 12 talkbacks) is
allocated to each of up to four cargo elements.

e One-half of the space of L-10 or L-11 (19"Wx1l0 %'"Hx20"D) is available for
user-furnished items for each of four cargo elements.

e Specific location of panels on the AFD is at the option of the STS operator
and may vary from flight to flight.

e Additional panel space at the orbit station and the mission station is
availabrle, but limitations of wiring access, cooling, and panel depth are severe.
Utilization of these spaces may further be limited to functions which require
out-the-window viewing, or in the case of the mission station, concurrent

~_access to the Orbiter MCDS.

] In.flights carrying Spacelab with another cargo element, the "other" element
will be allocated one-half of one standard switch panel and one-half of L-10
or ‘L-11. ~

e Panel space assigned to a 'cargo element'" must satisfy the carrier and its pay-
load, plus ASE for both.

e Space beneath the PSS conmsoles for "black boxes" such as RAU, DEU, should be
assigned as a last resort, since the space is insufficient for 4-way sharing.

4.4 Existing Equipment
L This section contains the results of a survey of existing equipment potentially
usable as payload controls. The equipment examined includes Orbiter, Spacelab,
IUS, SSUS, Teleoperator and MMS Controls.
-64=
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4.4.1  ORBITER CONTROLS
4.4.1.1 QRBITER CONTROLS/STR INTERFACE

The STR system defined in Reference 1 shown in Figure 4-4 must be compatible

with the orbiter controls defined in Paraéraph 4.4,1.1. The STR system was designed

to allow DOD paylc;ad control from the ground thru the SGLS communication system.
An analysis of the Orbiter controls system shows that it has sufficient capability
and capacity to operate and control DOD experiments and the STR, includiné an -

STR mounted pointing system. (See table 4-5 )

TABLE 4=-5 ORBITER GPC CAPABILITY

o Accomodating of a large number of switching functions
o Processing of 500 discrete/analog parameters for
- data acquisition
failure detection and annunciation
table maintenance
checkpoint
display
- downlist
o use up to 5 displays
= 4 MDM discrete command (20 items/display)
= 1 SM-type or table maintenance or subsystem configuration
monitoring.

However, there are some limitations and some additional STR hardware and

interface hardware which gzre required, These will be discussed in the following
paragraphs which also describe the usage of the Orbiter controls system.

Programs for controlling, operating and monitofing the DOD payload/STR may be
stored in the GPC. This requires that a definition of the software and GPC
requirements be available 36 months prior to flight since Orbiter capabilities

are shared, many of them on a %,%, 3/4 or total share basis. Software may be

compatible with the GPC format and therefore will probably be developed by JSC/IBM.

This involves a DOD/payload contractor/STR integrator/R1/JSC/IBM inFerface. The
programs can be accessed from the AFT Flight Deck via the keyboard. Discrete
commands to the payload/STR are transmitted from GPC via MDM to the payloads.
Serial digital commands flow from GPC to MDM thru the Payload Signal Processor
and then to the sortie payload at SIKBPS. (See Reference 2). Data from the
payload for display is routed from the payload to the PDI to the PCMMU to the
GPC then to the CRT. This data is .lini.nd to engineering data at 64KBPS. If
high or medium range payload data is to be displayed, it must be subcommutated

to 64KBPS, engineering data level. This would degrade the resolution and may
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rendor the data display unusable.

To make the STR system compatible with the Orbiter Controls system, an encoder

must be added so that commands will be compatible wit§ the existing decoder and permit
control from the ground as an alternate commanding mode. In corporated in the

System encoder would be a capability for switcﬁing from on-board to ground control
commanding modes. In addition, a buffer must be added to the telemetry unit

for low rate data and to the payload interface unit for high rate data.. These

buffers would control data paths to either ground or gFD or both. In addition

to these changes, adding an FMDM (Sperry Modular Interface Unit Type) at the STR(Figure 4-5)
would reduce the.number of wires to the AFD contr01 panels., This would reduce

payload flight weight and ease the integration and orbiter capability sharing
problems.

FIGURE 4-5 FMDM LOCATION ADVANTAGE
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This FMDM is similar in function to the MDM described in paragraph 4.1.1.1 with

half of its capacity

Controlling a pointing system can be accomplished using the Orbiter controls
keybdlrd'and data display and the portable MPC. The IPS, ASPS and points pointing

systems were considered. Each of these processes stability and pointing in




puts and generates commands to its toiguers using its own mini-processor or
Yol

computer. The ASPS system is shown in Figure 4=-11 as an illustration. Showing

_—
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Figure #=Y1 ASPS Pointing System

the NASA Standard Computer NSSC-II as the dedicated processing uni-t. The other
Orbiter services which are available and controllable from the AFD are

° Cj.b_sed circuit television monitors .

e Timing inputs

e GH& inputs
These inputs, if utilized by the payload, can be controlled from existing AFD
Orbiter controls and only require the tie to the payload, which is a usage, not

a control function.
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It 4.4.1.2 Evaluation of Orbiter Controls Usage For DOD Payloads

The advantages and disadvantages of using the Orbiter controls and the on-
board.systems to control DOD payloads are as foilows:
Advantages

e The system has the capability to control the DOD payloads with certain

restrictions (See disadvantages).

e The new hardware required (i.e. FM DM, encoder, harnesses) is minimal.

(Since the usage time of these controls.by the Mission Specialist to
manage qnd monitor the Orbiter systems is not defined, it may be necessary
to provide an additional console, both of which can be used for Orbiter
\ Systems Management or payload control.

e Using Sqftware which is integrated into the Orbiter Muster Measurement

list assures that all activities are compatible with the Orbiter activities.
The Disadvantages are:

e . Sharing the controls with the Systems Management of the Orbiter and with

other payloads limits the availability of the controls for DOD payloads.

This situation will vary from mission to mission. On missions where other

payloads are deployed, the controls are totally available for the DOD pay-
loads. On Spacelab missions where the Orbiter controls are utilized by
Spacelab payloads, the competition for their use exists throughout the
mission. The problem of sharing can be alleviated by the use of additional
equipment such as panel switches, depldy CRTS, keyboards. However the

GPC, MDM and other integral Orbiter equipment could not be duplicated
% without greatly increased costs. '
l' 0' There are several limitations on data handling using the Otbiter controls.

- 1. The GPC cannot currently be used as part of an automatic control loop.
| }- The crewmen can’be alerted via CRT or warning light, but he must initiate

the further action.

e




2. Data processing for interaction is currently not done by GPC.
Interactive processing must be done by payload equipment since the
GPC is limited to limit comparison functions.

3. Only engineering d;t:a can be displayed and monitéred. High and
medium rate data must be subcommutated in which case, resolution
is lost.

@ Software must conform to GPC format. This involves a costlier Software

effort than for a simpler system such as a micro-processor.

Since RI controls the inputs, JSC manages the software and IBM develops the
software, an extensive 1nte'rface is involved. Integration requires a period of
greater than 18 months. The procedure is a follows:
1. Submi and Software requirements to RJ using one or both of the following :
forms.
MSR - Measurement Software Requirementa.
FSSR - Functional Subsystem Software Requirements
2. RI will prepare 1nputi on cards and submit them to JSC
3. JSC integrates the requirements with other payload and Orbiter require-
ments. JSC than directs IBM to prepare the software :
4. IBM creates software.
The above procedure must be conpleéod 3 months prior to flight, It must also
add ‘time for RI activity and payload 1ntc§ratou to prepare the requirements.
e The software integration and checkout tasks are costlier since integration

with other payloads is required, simulators may be necessary etc.

e Security limitations may require the use of a dedicated control system on the AFD.
4.4.1.3 Recommendation :
The evaluation of the use of the Orbiter controls for DOD payloads indicates
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that the capability exists to control those DOD payloads with simple control
and monitoring requirements. Because of the sharing, which is on a one fourth
basis, with other payloads, the capacity ‘available to the DOD payloads will éary

from mission to mission.

Due to these factors, the data handling lim:ltations,. and the estimated high
software costs associated with GPC, the Orbiter controls are not recommended for

complex DOD payloads such as BMD, SLED and HIRISE,
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4.4.2 SPACELAB CONTROLS

4.4.,2,1 Evaluation

A review of the manned interface capabilities for Spacelab pallet-only type

payloads clearly indicates that the Spacelab equipments could be used with the

. DOD Standard Test Rack (STR) in a manner very similar to the currently planned

Spacelab missions on the S?ace Transportation System.

The Spacelab electronics, controls and displays as presently configured for the
Shuttle Orbiter aft flight deck provides a means for the STS Mission Specialist
and/or the Payload Specialist to interface and to interact directly with the
pallet-only type payloads while they perform their orbital operations in the

cargo bay of the Shuttle Orbiter.

If the STR is used forselected DOD experiments aboard the Shuttle in low earth
orbit, the Spacelab equipments can be used with the STR to provide a capability

for manned assistance to the DOD experiments during their orbital operations.

In order to accomplish this, it will be necessary to integrate the STR with the
§pacelab Igloo as a cargo bay payload. This is required because the actual
implementation of man's activities in the autonomous operations of the STR is
initiated by the man on the Orbiter AFD via the mission and experiment statipn
displays and controls, and especially via man's command inputs to the STR using
the computer keyboards on the AFD. The Igloo is essential because the Spacelab
subsystem computer and the experiment computer and their supporting subsystems

and peripherals are normally mounted in the Igloo and it is through these computers

. that the man's commands, initiated at the keyboards.on the Orbiter AFD, are actually

formatted, addressed and directed to the proper parts of the payload for implementation.

Since the payload support subsystem operations and the experiment protocol operations
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are controlled by the stored software programs in the computer memories, man's
ability to intervene in these pre-prog;annmd operations and to modify, revise, repeat
or even rewrite the preprogramﬁed operations from the AFD keyboards gives man

direct acéess and over-riding control of these funqtional operations out in the

cargo bay payload.

Since the Spacelab suppqrt subsystems3 the STR support subsystems and the DOD
experiment functional operations are all fully automated for autonomous operations,
the capability for manned intervention and revision of these automated sequences
provides a means for man to use his unique capabilities to monitor, control and

to optimize the performance of the orbital experiments in real-time, on-the-spot,

during the space mission.

For some DOD experiments, the provisions for man to see what the experiﬁent
sensor is seeing and to perform fine sensor pointing adjuétments will allow

the man to use his unique abilities to recognize targets of opportunity and to
provide direct control of sensor pointing mechanisms to align the sensor on
specific targets being sdught. Wﬁile such functional activities can be automated
to some degree, it is usually more cost effective to let th; man perform such
operations than to develop automated equipments to perform such complex funcﬁions,

particularly if infrequent usage is anticipated.

In order to use the Spacelab Igloo with the S:R as an automated payload, there
are some problems that would have to be resolved. The Igloo is normally attached
to the Spacelab Pallet as part of its structural mounting in the Orbiter cargo
bay. If the STR is used in place of the pallet, it will be necessary to proviuie
the structurai support to the Igloo that is normally provided by the pallet
structure. Similarly, the Spacelab active cooling loop for the equipment in the

Igloo normally utilizes the Dual Freon Pump Package and Accumulator, mounted on
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the forward edge of the pallet, to circulate freon 21 thru the Igloo cold plates
and the Orbiter heat exchanger. It would be necessary to relogaCe and mount the
Freon Pump Package and to provide electrical harness and freon tubing to recomnect
this pump package. This would include on/off signal harness from the pump package
to the subsystem computer I/0 and power cables from the subsystem 400Hz inverter

in the Igloo to the dual pump motors.

Electrical and electronics units and cabling on the Orbiter AFD and from the

AFD to the Igloo in the Orbiter cargo bay should be available as part of the
Spacelab/STS system; however, for Spacelab pallet payloads, the Igloo is normally
connected to an experiment remote acquisition unit (RAU) that is mounted on a
cold plate on the Spacelab Pallet. It would be necessary to relocate this RAU,
perhaps on' the STR, and to provide an experiment data bus harness from the Igloo
interconnecting station (IS) for the experiment computer I/0 unit, to the new
RAU location. This RAU also requires a cold plate mounting to dissipate thermal
energy and is normally on the Spacelab freon loop for active thermal control. All
commands, data signals, and timing signals from the STR and its DOD experiment are
routed thru this RAU to the experiment computer and theuace to the rest of the

Spacelab CDMS and to the Orbiter GPC.

4.4.2,2 Recommendations

While it is evident that the Spacelab equipment can be used to provide manned
assistance to the STR and DOD experiments during their orbital operations aboard
the Shuttle Orbiter with probable enhancement of the overall experiment results
achieved, it.will entail additional costs and complexities on any given mission
as compared to che‘coat and complexity of an autonomous STR mission. However,

since the Spacelab system will be available and fully integrated and qualified for

(lt.hi missions on the .Shuttle Orbiter, it would certainly be cheaper to use it

than to develop fabricate and qualify a similar system of comparable capabilities.
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-General Electric recommends that the following tasks be further evaluated relative

‘to the potential use of Spacelab equipments to provide manned assistance to STR
and DOD experiments aboagd the Shuttle Orbiter:
1) Determine which STR/DOD experiments would benefit most from the use of
Spacelab equipments. :
2) Determine the cost/availability of Spaceiab usage relative to the specific
DOD expegimenté’time schedule requirements.
3) Determine the specific functional operations that the Spacelab equipments
can satisfy for a typical DOD experiment from Item 1 above.
4) Provide a preliminary design and cost analysis for Item 3 above.
5) Provide recommendations for'the DOD experiments identified in Item 1

above relative to their use of Spacelab equipments.

4.,4.3 Interim Upper Stage Controls

4.4,3,1 Degcription

Although a number of studies have been performed, including the two referenced
above and others, the current status of IUS controls for use aboard the STS
‘Shuttle Orbiter is confined to a single package of avionics and a single control °
panel designed for use on the aft flight deck of the Orbiter. Based upon a
private telephone conversation between thejGE study personnel andAa key individuai
at the Space and Missile Systems Command (SAMSO),.Air Force Systems Command,

Los Angelas, California, on October 13, 1978, the existing IUS Control Panel is
strictly dedicated to the IUS functional operations required. This unit is
designed for installation on the Payload Specialist's Station at either panel

L 10 or L 11 (See Figure 4-1 shown previously). The avionics electronics
associated with this control panel is mounted directly below the panel in volume l
L 13 or L 14 on the Orbiter aft flight deck. Figure 4-7 _ shows a block diggram

of this IUS Control System.

75

7Y B o = PP s

R e A e




TUS CONTROL e 4 BUTTONS
PANEL e 2 THUMB SCREWS

(ON AFD PANEL L 10 or L 11 ) e NIXIE LIGHTS

FREE FLYER
R_CONTROL
(mml UME L 13 or L 14)
COMMANDS & S

DEDICATED IUS |

Figure 4-7 IUS Controls Block Diagram

According to the information received in the telecon mentioned above, the IUS
Control System that currently exists is unique to the requirements of the IUS
functional oberqtions and it is not applicable for use with the Standard Test
Rack for any purpose other than control of an IUS should this be included in a

DOD experiment in the Space Shuttle.

4,4.3,2 Interfaces

The IUS Control System is designed to fit thé standard control panel mountings
on the Orbiter AFD and the electronics package is designed to fit the AFD L 13

or L 14 volume dimensions.

4.4.3.3 [US Evaluation
The current design IUS Control System is not applicable for use with the DOD Standard Test )|

Rack for DOD experiments aboard the Shuttle Orbiter.

4.4.3.4 Recommendations
Although the.exinting IUS Control System is not applicable for use with the STR,

considerable effort is still being expended relative to potential additional ) |
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equipments that could be developed for use with the IUS. These items include
studies of the potential for using the Orbiter General Purpose.Computer (GPq)

for IUS control, studies of a manual switch panel which would ﬁe activated by
crew members to control the IUS via talkback indicators, the development of
Airborne Support Equipment (ASE) for the IUS, studies of the software require-
ments if the GPC is used to control the IUS via the Specialists Function control
organization in the appliecations software, etc. Since the computer software and

. hardware provides a capability for implementing specialist functions as part of
the Systems Management functional area in the form of tables of discrete commands,

the IUS switching functions could be controlled as part of the existing GPC operatioms.

It is recommended, since so hany areas of IUS controls are still under investigation,
that the potential for using the IUS controls with the STR be further investi- ks
gated with the intent of determining if the IUS/STR Control. functions have, or

could have, major_ commonalities that would let one unit be used for both STR and

for IUS. 1If practicable, such a common control unié could be especially valuable

to DOD because many STS launches that would include IUS stages could also ac-
commodate the STR with various DOD experiments. This combination has added pot-
ential economic and operational benefits since, on a normal IUS mission, the IUS

is deployed the first day in low earth orbit, and this could leave the STR and

DOD experiments in orbit for the remn#ning 6 days of an STS sortie mission, éith

the full capabilities of the Shuttle Orbiter-and its crew available for STR

operations prior to its return to earth.

4.4.4 SSUS Controls
The Solid Spinning Upper Stage (SSUS) is being developed for payloads

which will operate in orbits not achievable with the STS. The SSUS is controlled
and monitored from the AFD prior to deployment. The Orbiter Control panel and
GPC, MDM etc., are utilized as described in Section 4.4.1. 81xtcen switches on

the standard switch panel and the shuttle keyboard are uced for a relatively small
77

AT TRy TA R T IR X O ;s ki o




Fr

| | |

number of commands and data points. Hardware and data bus are used. After deploy-
ment, the SSUS is controlled by a timed sequence function in the SSUS itself. No

unique SSUS equipment exists which could be utilized for controlling DOD payloads.
4.4.5 Teleoperator Controls

4.4.5.1 Teleoperator Controls Description

The Teleoperator Retrieval System (TRS) is a free flying spacecraft deployed from
Shuttle which can rendezvous and dock with other spacecraft and provide various
subsysteﬁs support to them. It also has manipulator arms which can perform
servicing functions. The current version is a short life control capability designed to
maintain the Skylab Orbit. It has boost, deboost, deployment and retrieval

capability. The TRS configuration is shown in Figure 4-8.

Figure 4-8 Teleoperator Retrieval System Configuration.
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The cradle which supports the TRS is shown in Figure 4-9.

CaDM

Eq Bays
(2 Places)

Cradle/TRS
Umbiticals

Xo 1057.20 Y, 0.00

Figure 4-9 Teleoperator Retrieval System Cradle (TRSC)

The Teleoperator is self-deployed from the Orbiter cargo bay, controlled -'during
free flight and rehdezvous/docking, and retrieved using the Orbiter RMS gnd re-
secured in the Orbiter cargo bay. All operaéions are controlled from a dedicated
console mounted in the L-11 panel on the AFD. A description of the Teleoperator

control system is contained in the following psragraphs.

The Orbiter crewmen will be provided with three devices to .interface directly
with the Airborne Support Equ:l.i:ment Computer (ASEC) and indirectly with the
TRSC for the purpose of controlling and moni.toring the TRS Spacecraft. The
devices shall be as follows. :
a. A terminal consisting of a 32 button keyboard (KBU), a CRT display ‘
unit (DU) for video and graphics, and an IBM SPOA computer and as-

sociated hardware (DEU);
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b. Two hand controllers to control translational and rotational thrusting;

c. A control panel of switches for power application and subsystems manage-
. ment. In addition, some switches on the Standard Switch Panel and the
jettison control panel are used.

The Teleoperator Controls are showa in Figure 4-10.

These de.vicea will interface with the ASEC by the Aft Flight Deck Interface

Electronics (AFDIE). The ASEC shall accept commands from these devices for the
following:

~d. Controlling operational modes;
e. Selection of displays;
f. Select individual or string power commands, camera commands, lighting
commands, and probe commands;

g.  Rotational and Tranglational hand controller commands.
The DEU will be the primary device for countrolling the TRS mission through the
selection of mission modes. The mission is divided into major operational modes
called OPS modes. These OPS modes describe the state of the ASEC and TRSC required

to support the TRS mission phase. The modes are selectable from the DEU keyboard.

These modes are defined in Table 4- 6.

Table 4-6 Operations Modes Descriptions

M Function
700 | IDLE
701 ASE In-Bay Checkout
702 TRS In-Bay Checkout
703 : ~ Deployment
704 Rendezvous & Docking
705 Deboost
706 Reboost 80
707 On-Orbit Storage
708 Retrigval 2




b

! - i .
% .2. W Lo .Q_
o PUBIT BECK= | m— CRADLE ey
i T oSN WS |
L
. ST G .
DD ® @l
S A
; s stev osn o i
f 3% ;::mq—." ¥ ‘——’Ow.un—ﬂ.! 4
navsr' A . . N e
3 on — G P ON v 6
. ’ w ]
yﬂ@ i- ﬂ@" @)"l :
3 _“._ 2 . ..i - .‘.l.j' [ ¥ :-i.
M:L sag—-wn‘l—-‘ 5 r—c:wn.n—l =
CLOSY e O Y . e -— ON 2
DEE L : EEE
s ) ; S, R L S su o o
’ —OF A — 0 : ~ — OB Ao v
SN - . - -l 5 J
BOCK LICHTS . H T
repen v ona g, PR T oy soon T g, e amme | vpATmmOmmen L
I =3l , S 2w _ o
3D |®]e|8|® @@k 121 =
- s 2 ‘;‘4 m:... m MA Man © CloSEaA Me [V73 L 2 R a 'i
T D L e o : ]
'33‘ ""' '¢' '.'.. < :
- M '
= . |é g :#
; ! 8 4 e 28,
s ; i .
D o ' o R :
¥ O S A : .
: + L (R 1
HE 2 1 ‘
i v . ‘ :
! '
¥ = 9| mae
R I 3 t
B l. ' '
z ; 12
ry & N vy One mare
} g .l oL RETATION
5 : ‘ PR3 BATL
' : ¢
. w | "o [O
E [i G suoiedesnnnusl PYTTTS
s -

Figure 4-10 Teleoperator Control Panel

8l




All transitions between OPS modeé shall be legal. An overview of the Orbiter

! crewmen interfaces with the TRS Spacecraft is shown in Figure 4-11,

The Orbiter crewmen terminal consists of a 32 button keyboard, a Cathode Ray Tube

(CRT) display unit, an IBM SPOA computer and associated hardware (Display Electronics

Unit (DEU), and software (DEU Control Program (DCP)).

a. The Keyboard Unit (KBU) consists of 32 buttons layed out in a 4x8 format

shown in Figure 4-12, below.

Fault Sys MSG

Summ Summ Reset Ack
Not g B ¢
Used ;

D E F

Item 1 2 3

Exec 4 5 6

Ops 7 8 9

Spec - 0 +

Resume Clear . Pro

Figure 4-12 Keyboard Layout ;

b. The CRT Display Unit (DU) has a 5" X 7" screen;

c. The DEU consists of an IBM SPOA computer and associated electronics.
In addition, the DEU has two mutually exclusive inputs for TV video
signals to create a 525 }ine TV display;

d. The Aft Flight De.ck Interface Electronics (AFDIE) consists of a Multi-
purpose Interface Adapter (MIA) to interface with the DEU and a 24 bit

buffar to interface with the ASEC and slow down the bit rate from the
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DEU to the ASEC or speed it up in the opposite direction.
e. The ASEC computer is used as intermediate storage for passing control
commands from the KBU to the TRSC and passing Telemetry (TM) Data from

the TRSC to the DEU for display purposes.

4.4.5.2 Teleoperator Controls Interfaces

The controls communication path to a TRS Spacecraft in the free flier mode is
through a dedicated communicétion.and data handling system mounted on the TRSC
(see Figure 4-9) . The interface is thru a harness from the AFD designed for

the TRS system. This system has a minimal interface with the Orbiter.

4.4.5.3 Teleoperator Controls Evaluation

The Teleoperator cradle (TRSC) is similar to the STR in that is provides a great
deal of TRS autonomy with respect to the Orbitef. The current AFD controls hard-
ware is a short-life patch-work system designed for early usage to '"save" the
Skylab. It meets many of the requiremenés of a basic controls package. Its
electronics interfaces and manual controls are designed to accommodate its unique
purposes of deployment and steering the TRS in free élight. A design of a long

term, more flexible control system is in progress at MSFC.

4.4.5.4 Recommendation

It is recommended that the design of the Teleoperator controls be examined in
depth to determine if the cqmponenﬁs can be utilized. It is also recommended

that the current design of the TRS controls be examined in detail to see if a
control system to satisfy TRS and DOD payloads can be developed. Such an analysis
should include mission ana}ysea to determine common flight potential'since_both

TRS and many DOD payloads would utilize much of the on Orbit time of any given

mission.
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4.4.6 Flight Support System (FSS) Controls For The NASA MMS

The s'ystem utilized to support and deploy the.- NASA standard spececraft (Multi
Mission Modular Spacecraft, MMS) is the Flight Support System. It consists of a
support cradle with attach and release mechanisms which are controlled from the
AFD MCDS panel: A dedicated FMDM is, included in the system to minimize the
wiring interface between SSUS in the cargo bay and the AFD. A total of 50 commands
and 62 telemetry data inputs are provided for the cradle mechanisms, SSUS and its

‘“

payload.




4.4.7 Dedicated System Description
A typical dedicated Commune and Display (C&D) System for STR experiments is

described in Figure 4-13 within the heavy lines. i i
STR STR i
-0 TELEMETRY 4
UNIT PAYLOADS ’
CRT :
L STR PAYLOAD
~Q— DATAUF | 1
y
| e | ] [ 3
UPLINK | DECODER 214 RECORGER -
(STR)
cry i
XMIT
MEMORY ool
DATA & TLM
e . DOWNLINK

P e mamae

i |

T e |

[ o e R J

Figure 4-13 Controls and Displays Block Diagram
Key elements of this system are the coinputer and ttke CRT/keyboard for display and ¥ ’
control. Only the CRT and keyboard must be mounted on the AFD, The other C&D |
elements within the heavy line can be mounted on the AFD or on the STR in the cargo
bay. The elements not enclosed by heavy lines on-Figure 4-13 are standard STR sub-
systems which are used by and interface with tile C & D function. The remainder of
this section is devoted to a description of a C & D éystem which would meet performance
requirements for support of the STR payloads and wo uld also meet the programmatic
requirements of mission to mission adaptability (modular system). Specific items
for discussion are CPU, memory and control and display hardware, and operating
system software. A treatise on software is presented since software is and will

continue to be a cost driver.
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4,5.1 CPU and Memory
The computer systems listed on Table 4-7.are typical space qualified equipment that

COMPUTER POWER COST MANUFACTURERS

; LSI-11 25 W $100/200 K DIGITAL EQUIPMENT CORP,

| PR-11% | 300w $100/200 K NORDEN

; ALPHA-16 | 12 W $500 K |  GE (PSCS)

| . PCS-1880 - - L PROCESS COMPUTER SYSTEMS (ACPL)
NSSC-1 50 W $250 K l IBM (FOR NASA)
CDC469 9-20 W $200-300K | CONTROL DATA CORPORATION |

Table &4-7 Typical Computers
are representative of those which could perform the STR payloads task. There are
certainly others which could do the job but time and resources -did not permit a
complete industry survey. If a choice were to be madé today, the LSI-II would be
selected with the Alpha-16 as a secona choice. The primary reason for selécting
either of these devices.in a typical system is that béth are a member of a "family"
of computers which are very prevalent among the users‘of computational equipment
i.e. the DEC PDP-11 series. Each of these machines meets all of the requirements
defined for STS use. It is emphasized that software considerations drive the
hardware choices. The .discriminator for recommending these machines is
that by virtue of their being members of a Broad based, heavily used family of
computers the tasks of developing and integrating software to run these machines
is made lessvburdensoge. 'Since new software will be developed for each STR
mission thig is an important consideration. The following factors support this
conclusion:
e A large pool of trained, competant PDP-11 analysts and programmers already
exists from which to draw personnel necessary to develop, test, and integrate |

the software for each STR flight.
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e A versitile library of proven support software already exists and can
be used directly. This library includes assemblers, compilers, interpreters,
linkers, loaders, debug tools, etc.

e A complete i‘epetoire of programming languages is supported. The standard
agssembler language, Fortran, and COBOL languages are available and it is
not necessary to devise new languagep.

e Since we have define.d a member of a family of computers there is flexability
in the system w;hich permits developing and testing flight software on non-
flight hardware and then transferring the softwgre to flight hardware with-

out modification.

4.5.2 Display Unit And Keyboard

The capabilities and flexabilities of this unit is a key element in the overall
design of the control #nd display subsystem. There has been a significant amount

of work do;xz Ain defining a display system to support the orbiter payloads control
function. Due to the physical cons'tra:lnts on the Aft Flight-Deck a display system
supporting multiple functions is required. A summary of available typical mlti-
function display systems is shown in Table 4-8 . The ideal STR control system is

a combination of the systems on ‘i’able 4-8 and is illustrated by an * on the it;ma

in the referenced table. The CRT/Keyboard display device characterized in Tai:le 4-8
does not exist. However, it is within the capability of existing technology. The
éoncept as fllustrated in Figure 4-14will p.rovide all the con_trol functions required.
The display area is large enough to allow meaningful displays to be presented to the
payload specialist. There are 2 keyboards available for use by the Payload Specialist.
The alphanumeric keyboard allows the maximum flexability for controlling STR payloads.

The 4 x 4 programmed -function keyboard allows each of the 16 keys to be defined as

whatever function is required by the payload being controlled. This provides maximum

I T e T RS,
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flexibility within the hardware system.

4.5.2.1 Alternative Concept
In recognition of the fact of life which says that technology is advancing at a rapid rate,

GE has identified an alternate control and display concept which advances the state of
the art while it simultaneously provides support for both test and operations of shuttle
payloads. The device shown in Figure 4~15 could be called a suitcase science data :
system. - All items shown are .contained within a briefcase sized device which if developed,
could support .all control and display requirements of STR payloads from inception through
development and test and operations. The device could be stowed in the shuttle (See Section
4.3) and activated as required. Storage would be in lockers A-16 or A-17 on the AFD if
available or on the mid-deck below the floor. When retrieved and set-up it could be
connected to power and the control system on one of the AFD payload panels. The unit
could be operated on the AFD or the mid~deck.

The alternative to self-contained panel mounted equipment is shovyn in Figure 4-15.

KD11-F MP: INTERFACE TO

COMPUTER

= HIGH SPEED
PRINTER

- MICRO-FLOPPY,
. DISK

Figure 4-15  Self-Contained Control Bquipment
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This is a control and display unit which provides a system output medium, an

alphanumeric keyboard, and a functional keyboard which can be programmed for any

specific function. The unit is a scientific data system control and display unit.

It has been designed by R. Croston and Associates of Houston, Texas for the test

and checkout of individual experiments by principal investigators in their labor-

P ——

atories. It contains a microprocessor for interfacing but computational capability

must be provided by a computer mounted on STR or on an AFD panel. It is proposed

-

that this concept could be extended to the on orbit situation in a manner whereby

the control and display for each payload would be a separate suitcase controller, L

stowed on board on the AFD or in the mid-deck area until needed. This could get around

on AFD space problem and increase the number of potential missions on which DOD _
* payloads could be flown.

4.5.3 Payloads Control Software

Development, testing, and integration of software for STR payloads will be a
ﬁj& driver in determination of cost. Previous paragraphs have attempted to
illustrate the cost uvings. to be derived from selecting a hardware system which
is proven and provides the software tools to support the development, testing and
integration of software for each STR flight. There is a significant body of soft-

ware which can be deﬁ.ne& and used for each flight. This software can be defined

R oo g

] as an operating system but it includes far more capability than the l.ystem menage-

ment functions typically associated with an operating system.

The STR Payloads Control Operating System which would be required would be composed

of the normal data system control and management functions but would also provide

a standard menu of functions with which payloads would be required to comply. Specifics

ey

are defined below: . : || !i

@ A table driven display system where each payload element defines graphics .

gy




and alphanumeric displays to the software system.

o All payload parameters would be displayed in engineering units and necessary
tables to convert raw data to engineeriﬁg units is required.

o The software will accommodate interfaces for payload unique programs to
acquire and display data.

Perhaps the most delicate data system task for any mission is the integration and test

of the set of application software which is going to fly. The delicacy of this task is

i’ derived from the fact that there could be single or multiple experiments flying on any

, - one mission. Each experiment has its own goals to be achieved yet the total mission

must achieve the goals of many experiments. It is essential that the variables of

software development test, and integration be recognized and accomxﬁodated in the overall
hardware and software system. It is suggested that a well known hardware system I;e

adopted. Concurrently, a well defined software environment should be established. There

is a plethora of software options open toa payload developer who hopes to fly on STR.

We strongly recommend limiting the application software options open to any payload developer

to those shown on Figure 4-16. These options are:
1, Software fotr control and data display €4D using other than the orbiter systems.
2. Software using both C & D and Orbiter.systems where orbiter system capability
is necessary. '
3. Software using the orbiter system only where the need is very small not
meriting a separate system, '

The key software issue will be putting together a compatible set of mission software.
Certain capabilities should be provided as standard functions to which each payload
developer must conform. These are: display formats, time acquisition, limits and
threshold checking and alarm display and formatting for output.
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. power, cooling, electrical connocton,' and crewmen time. Some alternatives are

following systems which utilize it. (See Table 4-9)
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4.5 Recommended Equipment

4.5.1 Controls Approach
The best mode of providing control capability for DOD payloads is to utilize a

dedicated system located on the Orbiter AFD. This equipment should be augmented

. whenever possible by the standard orbiter equipment such as the Standard Switch

Panel, the video display, the pointing control capability. Even though some
missions will not require the full capability or even the use of man, this system
designed in a modular concept will provide for the large variety of DOD payloads
in the five families identified in this study. The Orbiter and Spacelab cc;nt;'ola
are not recommended because of competition for their used by Orbiter s}ystems,

Spacelab systems and other payloads. Using Spacelah controls would limit the :
missions to Spacelab flights, since the Spacelab flight schedules will not permit us;:.gé of

the Spacelab control equipment except on épacelab flights. In addition, lower software and
integration costs are predicted for the dedicated system approach as compared to either
Orbiter or Spacelab controls. The dedicai;ed system provides maximum controls availability,
minimum interface with the Orbiter and ths resulting flexibility and ease of integration
characteristic of the full up STR concept. .

The dedicated system mode is not without its implementation problems. _Such a system

would be competing with other payloads and systems for AFD resources such as space,

availdble and have been investigated fn this report. (i.e., the self-contained

"suitcase" approach to alleviate space crowding).

The dedicated controls approach appears to be the trend as evidenced by the




Table 4-9 Control Mode Survey

CONTROLS
USER SYSTEM DEDICATED ORBITER SPACELAB

IUs X

SSUS ‘ X

TRS i ' X |
ACPL  (Atmospheric Cloud Physics Lahoratory) X f
LIDAR (Light Detection and Ranging) X

MPS " (Material Processing System) X

MMS (Multi-mission Modular Spacecraft) X

The SSUS and MMS utilize Orbiter controls for a relatively short perlod; of time to
accomplish a system check, latching release and deployment from the Orbiter bay. The
ACPL, LIDAR and MPS are Spacelab payloads and still utilize dedicated control approaches
(proposed made for LIDAR). 3ince it is probable that DOD STP payloads would fly with
other prime payloads an a.m.zlysis of the AFD panel space available was made and the results
are shown on Table 4-10. . The panel availability to STP would depend on what other NASA
or DOD payloads fly on any manifested flight.

Table 4-10 AFD Panel Availability

ORBITER AFD PANELS * AFD PANELS * SOURCE OF

AYLOAD ~ USED AVAILABLE . | PANEL USE
LEMENT TO NASA AND | DATA
DOD PAYLOADS :
S L-11 R11, L10, L12 AF office at JSC
US R12, HALF L-12 | Ril, L10, L11, HALF L12 MDAC Telecomm.
R12, HALF L-12 | RI11, L10, L11, HALF L12 GSFC Telecomm.
L-11 ' R11, L10, L12 MSFC Telecomm.
ACELAB | Ril, L11 NONE TO JSC Meeting &
L10, L12 SPAH*

* Spacelab Payloads Accommodation Handbook, ESA SLP/2104, 30 June 1977,
A summary of the advantages and disadvantages of a dedicated payload control system

is contained in Table 4-11.
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n Table 4- 11 Advantages and Disadvantages of a Dedicated Payload : ?

i Control System !

. ADVANTAGES | DISADVANTAGES

NO EXTENSIVE GROUND
SIMULATORS REQUIRED I
LOWER SOFTWARE COSTS !
LOVER SOFTWARE INTEGRATION COSTS |
OPTIONS FOR GROUND CONTROL

MINTMAL GSE l

~o SECURITY NEED , AT

1 e INDEPENDENT OF OTHER EXPERIMENTS | e MORE HARDWARE REQUIRED
e FREEDOM OF FORMAT e COMPETITION FOR AFD A
1 e EASE OF TEST AND INTEGRATION RESOURCES ; ;
[ ]
l
|
|

s 4.5.2 c 1s Equipment L
The result;lng 1ist of equipment required is given in Table 4- 12.

Table 4-12 List of Dedicated Payload Controls Equipment

Display Panel
CRT (Graphics, Video)
Controls
; P | Display Electronics Unit
L) Keyboard (Alphanumeric)
Switching Module
Switches
- Indicator Lights
| ki Computer System (Modular)
| § ! CPU
: » - Memories
| iU I/0 Interface Digital
' . 1/0 Interface Serial
Harnesses :
FMDM (STR Mounted)
Command Encoder (STR Mounted)
Buffer (Added element)
STR Telemetry Unit
STR P/L Interface Unit
Standard AFD Panel

Support Equipment
ECSE

llsintenance Kits
Cround
Airborne
Shipping Containers
Orbiter Simulator (Limited)
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10.
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13.
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16.
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18.
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